CAS Artificial Intelligence for Creative Practices Study Plan

²⁰²³⁻¹⁰⁻⁰² The Artificial Intelligence for Creative Practices Course is a university-based program leading to a "Certificate of Advanced Studies in Artificial Intelligence for Creative Practices" awarded by the University of Bern and the Zurich University of the Arts as laid out in the orgulations for the certificate course Artificial Intelligence for Creative Practices of 2023-12-07.

1. Course objectives

Artificial intelligence (AI), in the form of machine learning (in particular using neural networks) is becoming increasingly important for creative practitioners. On the one hand, machine learning and neural networks are being used to produce new forms of artistic expression across a wide range of creative disciplines, from art and design, to music composition and live entertainment. Outputs are not only high quality imitations of existing forms, but also frequently unexpected innovations. On the other hand, AI poses fundamental questions about human self and society. AI techniques are thus emerging tools and perspectives for artists and creative professionals. This CAS provides the technical and conceptual skills needed to understand AI algorithms and to design and train them for creative applications. It covers the main AC applications in the domains of language, imaging, sound, and movement, togethar with core cultural, philosophical, and aesthetic questions, and phical debates around AI.

Not formet is designed to align with the participants' main professional and ctudy activities. The teaching and learning approaches are team and discussion oriented, aimed at developing practical competency. Most recursion can also be attended online.

The course competencies are developed in six modules. At the end graduates will be:

- *1.* familiar with central cultural, philosophical, and aesthetic questions, and ethical debates around AI;
- 2. have a basic understanding of common neural network architectures and be able to train and assess those neural networks for art and creative applications;
- *3.* able to perform basic image processing and know the most prominent applications;
- *4.* able to process sound with deep neural networks and know the most prominent applications;

About

unpeence objectives United ecte

- 5. able to process movement data with deep neural networks and know the most prominent applications;
- 6. able to perform basic Natural Language Processing with deep learning models and know the most prominent applications.

2. Duration, outcomes and objectives of the modules

Duration and scope The CAS consists of about 21 days of courses (147 hours attendance) and 16 ECTS credit points (total effort about 480 hours) whereof 4 ECTS result from the CAS project work.

> The program consists of six modules whereof four are weekly blocks and two are weekly half days. The final block concludes with a vernissage of works-in-progress created during the CAS. All modules support distant learning. Crash courses on Python and basic mathematical concepts for machine learning (vectors, matrices, optimisation) are offered at the University of Bern before the start of the CAS.

> Attendance at one information event *About the CAS Artificial Intelligence for Creative Practices* before course admission is mandatory.

Module 1 AI and ML Fundamentals

In which we approach basic AI concepts from an historical, cultural, aesthetic, and technical point of view to perform machine learning. This is a block module in presence.

ECTS	2 ECTS credit points	Duration	3 days = 21
	(incl. self-studies and		hrs
	project)		attendance
Assessment	Project presentation	Req. attendance	80%
Learning	Graduates will	•	
outcomes	• build up a general und	erstanding of AI	
	 be introduced to historical background of AI 		AI
	• be introduced to lager	conceptual debates a	around AI in
	science, art, politics, a	nd the industry	
	• survey creative uses of	AI in the arts histor	rically and ir
	the present.		
	• know basic concepts of machine learning: training,		
	testing, over- and under		e measures
Learning	• Definitions of AI and ML		
objectives	Machine learning concepts		
	Historical background		
	Conceptual debates are		
	• AI's use in the arts his	torically and the pre	sent with
	examples of practices		
	AI applications in art a	and other creative field	elds
Learning and	• Online plattform		
teaching	• Lectures and inverted	classrooms	
methods	• Hands-on tutorials wit	h Jupyter notebooks	
	• Discussions		
	Project work with pres	entation and peer fe	edback

Prerequisites	Basic Python programming
Language	English

Module 2 Neural Networks

In which we learn about various neural networks and study common applications in the arts and other creative practices. This is a block module in hybrid format.

ECTS	2 ECTS credit points	Duration	3 days = 21
	(incl. self-studies and		hrs
	project)		attendance
Assessment	Project presentation	Req. attendance	80%
Learning	Graduates will	·	
outcomes	 know common machine Neural Networks (NN) design and train NN 		
	• perform data input and	-	learning
	• perform basic data prep	6	1
	• be able to train and tune		a application
	programming interfaces	1 0	
	 know popular NN appli practices 	cations for art and c	reative
Learning	Machine Learning Mod	lels	
objectives	Data handling		
	• NN tuning and training		
	• NN and their applicatio	ns	
Learning	• Online plattform		
and teaching	• Lectures and inverted c	lassrooms	
methods	• Hands-on tutorials with	Jupyter notebooks	
	 Discussions 		
	• Project work with prese	*	
Prerequisites	• Basic knowledge of ma	•	epts
	• Basic experience with I	Python	
Language	English		

Module 3 AI for Movement/Sensing: Realtime interaction

In which we study how to train deep neural networks to learn and generate data from movement and vice versa. We will also consider real time interactions and the loops thereby generated. This is a block module in presence.

ECTS	2 ECTS credit points (incl. self-studies)	Duration	6 half-days = 21 hı attendance
Assessment	Project presentation or paper (to be fixed with tutor)	Required attendance	80%

Learning	Graduates will	
outcomes	• know common applications and platforms for AI	
	movement analysis and generation	
	• be introduced to various types of sensors for capturing	
	movement	
	 record and collect movement data 	
	• know human and machine understandable	
	representations of movement data	
	• train deep neural networks with movement data	
Learning	Applications and platforms for AI movement analysis	
objectives	and generation	
	Collection and representation of movement data	
	 Model training with movement data 	
	Machine generation of movement data	
Learning	Online platform	
and teaching	• Lectures online and onsite with hands-on tutorials	
methods	Workshops	
	Project presentations	
Prerequisites	• Experience in training, tuning and applying deep neural	
	networks, e.g. from previous modules	
Language	English	

Module 4 AI for Imaging

In which we learn how to process and generate images with deep learning and convolutional neural networks. The module runs weekly for a month in hybrid format.

ECTS	2 ECTS credit points	Duration	6 half-days
LCIS	(incl. self-studies and	Duration	= 21 hrs
	project)		attendance
Assessment	Project presentation or	Required	80%
	paper (to be fixed with	attendance	
	tutor)		
Learning	Graduates will		
outcomes	• understand digital imag	e representations	
	• perform basic image te	chniques for prepro	cessing
	• design and train Convo	1 1 1	•
	• use CNN for image pro		
	 know image based gene 	0 1	
Learning	 Image representations 		
0	0 1		
objectives	• Image preprocessing		
	Convolutional Neural N	()	
	 Image based generative 	e AI techniques	
Learning and	• Online plattform		
teaching	• Lectures and inverted c	lassrooms	
methods	• Hands-on tutorials with	Jupyter notebooks	
	 Discussions 	1 V	
	• Project work with prese	entation and peer fe	edback
Prerequisites	• Basic knowledge of ma	*	

	Basic experience with Python
Language	English

Module 5 AI for Sound

In which we learn about common sound patterns, how to collect and represent sound data, train models with them, generate new patterns with the trained models and get an overview of the common AI sound applications in art and other creative practices. The module runs weekly for a month.

ECTS	2 ECTS credit points	Duration	3 days = 21 hrs
	(incl. self-studies and		attendance
	project)		
Assessment	Project presentation	Req.	80%
		attendance	
Learning	Graduates will		
outcomes	• know how automatic so	und, speech and	ł music
	generation works		
	• understand digital audic	representation	S
	• perform basic audio tech	hniques for pre-	- and
	postprocessing		
	• design and train Recurre	ent (RNN) and	Convolutional
	Neural Networks (CNN)		
	• use RNN or CNN for audio processing and computer		
	listening		
	• sound based generative	AI techniques	
Learning	Audio representations		
objectives	Audio preprocessing		
	Audio-based generative	AI techniques	
Learning	• Online plattform		
and teaching	• Lectures and inverted c		
methods	• Hands-on tutorials with	Jupyter notebo	oks
	• Discussions		
	• Project work with prese	ntation and pee	r feedback
Prerequisites	Basic Python experience		
	Basic machine learning	with neural net	works experience
Language	English		

Module 6 AI for Natural Language

In which we learn basic natural language processing techniques with deep learning, together with common applications in the art and other creative fields. This is a retreat block module in presence.

ECTS	2 ECTS credit points	Duration	4 days = 28
	(incl. self-studies and		hrs
	project)		attendance
Assessment	Presentation	Req. attendance	80%

Learning	Module graduates will	
outcomes	• perform basic preprocessing and segmentation of text	
	for natural language purposes	
	• perform basic information extraction (know forms of	
	annotation and corresponding evaluation)	
	• perform basic natural language generation with	
	Transformer Models	
Learning	• Preprocessing of language for machine learning	
objectives	Modern language models	
	• Training and fine tuning techniques	
	• Popular NLP applications in art and creative practice	
Learning and	Online plattform	
teaching	Lectures and inverted classrooms	
methods	• Hands-on tutorials with Jupyter notebooks	
	Discussions	
	• Project work with presentation and peer feedback	
Prerequisites	Basic experience with Python	
	Basic deep learning experience	
Language	English	

CAS Project Work

In which participant teams create and present a comprehensive extended intelligence art project based on all CAS modules. For the realisation of the project, mentors with different expertise can be consulted by the teams throughout the preparation period which goes from the last module to the exhibition. Regular check-in with the advisors is suggested. Assessment by all module responsibles.

ECTS	4 ECTS credit points	Duration	120 hours
Assessment	Exhibition/performance	Req. attendance	None
	work	_	
Institute resp	UniBE and ZHdK		
Location	ZHdK		
Learning	Graduates will be able to conceive, create and implement		
outcomes	an AI focused project based on their own specific creative		
	practice		
Learning	Selection of objectives fro	m all modules so to	integrate AI
objectives	into own creative practice		
Teaching	• Project work with rem	ote supervision	
methods	Public showing: Exhib	oition/Performance	
Prerequisites	Module 1 - 6		
Language	English		

Assessment **3. Overall assessment**

The overall assessment includes 80% attendance and passed assessments from all modules together with the CAS project exhibition.

a) For Modules 1+2, 5 and 6 oral and visual presentations are assessed.

	b) For Modules 3 and 4 there is the option, for one of the modules, to write a text instead of a group presentation.
	c) For the CAS concluding project, the exhibition/performance work is assessed.
	4. Final regulations
Entry into force	The present plan shall enter into force on 2024-01-01.
2023-10-02	Released by the program management
	Prof. Dr. Christiane Tretter (Chair)
2023-12-07	Adopted by the Faculty of Science, University of Bern
	The Dean

Prof. Dr. Marco Herwegh